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Abstract

This paper investigates the role of non-linear tipping points in determining opti-

mal abatement policies. To do so, I introduce a stylised ice-albedo tipping point in the

climate dynamics and study the consequences this has in determining optimal emis-

sions in a dynamic stochastic general equilibrium model. In line with recent evidence,

I assume that climate change hinders economic growth. I show that the presence of a

tipping point prescribes ambitious abatement policies, not only in scope but, crucially,

in timing. Finally, by comparing the model with the widely used stochastic tipping

model, I show that in the latter abatement is slower and similar to a model with fast

temperature growth but no tipping. This casts some doubts on the appropriateness of

using stochastic tipping as an approximation for tipping points.
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As the world temperature rises, due to carbon dioxide (CO2) emissions from human

economic activities, the risk of tipping points in the climate system becomes more con-

crete (Ashwin and Von Der Heydt, 2020; Sledd and L’Ecuyer, 2021). This risk affects the

trade-off between the economic gains from emissions and the damages such emissions im-

pose on the economy. In this paper, I study the relationship between the presence of a

tipping point and the optimal abatement of emissions. To do so, I solve a social-planner

integrated assessment model with a stylised ice-albedo feedback in the climate dynam-

ics (Hogg, 2008; Ashwin et al., 2012) and study the effect this has on optimal abatement

policies. The tipping point affects temperature dynamics, and as a consequence optimal

emissions, in three ways. First, it introduces a non-linear increase in temperature. Second,

it makes positive temperature shocks more persistent than negative ones. Third, it intro-

duces a jump in the abatement necessary to revert temperatures to the pre-tipping-point

level. I show that, when tipping points are present, optimal abatement is more ambitious

in scope and timing

The importance of modelling precise climate dynamics and tipping points when deter-

mining optimal emission paths has been increasingly recognised in economics (Van den

Bremer and Van der Ploeg, 2021; Dietz et al., 2021, 2020; Taconet, Guivarch and Pottier,

2021; Lontzek et al., 2015). Previous approaches have mostly focused on the stochastic na-

ture of tipping points, by modelling temperature dynamics (Dietz et al., 2021) or damages

(Lontzek et al., 2015) as jump processes, with arrival rates increasing in emissions. Yet,

many tipping points in the climate system are caused by bifurcations (Ashwin and Von

Der Heydt, 2020; Ashwin et al., 2012). In this paper, I show that introducing this class of

tipping points in an integrated assessment model yields similar predictions in terms of ag-

gregate emissions, but prescribes much steeper reduction of emissions to keep the risk of

tipping low.

To tease out this difference, I study an AK-model in which increases in temperature,

beyond pre-industrial levels, reduce economic growth (as in Pindyck and Wang (2013)

and Hambel, Kraft and Schwartz (2021)). This modelling choice, as opposed to having

temperatures wipe-out a fraction of the capital stock, as in Nordhaus (2014; 2008; 2017), is

motivated by recent evidence on the role of temperature in reducing economic growth and

productivity (Burke, Hsiang and Miguel, 2015; Dietz and Lanz, 2019).
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1 Climate Model

1.1 CO2 concentration and carbon sinks

The average atmospheric carbon dioxide (CO2) concentration, in parts-per-million by vol-

ume (p.p.m.) at time t, is denoted by M . In the model, CO2 concentration dynamics are

determined by two processes: first, emissions by human activity E, in Gt s−1, and, second,

a decay into natural sinks, which happens at a rate of δm per s. To model the reduced

capacity of natural sinks to remove CO2 from the atmosphere, we assume that the decay

rate falls in the quantity of carbon dioxide already stored in the natural sinks N , in Gt. To

make this relationship explicit, I write δm(N). This also implies that the carbon stored in

natural sinks evolves as

ξ dN = δm(N)M dt, (1)

where ξ is a factor converting Gt of CO2 to atmospheric p.p.m.. Putting these two flows

together, we can write CO2 concentration dynamics as

dM =
(
ξE − δm(N)M

)
dt, (2)

where the level of emissions E is determined endogenously by economic activity.

The aim of the paper is to look at optimal abatement strategies. To make the relation-

ship between the abatement strategy and the climate model more transparent, I rewrite the

level of emissionsE in deviation from a business-as-usual scenarioEb. Furthermore, I nor-

malise these two quantities with respect to the corresponding level of CO2 concentration,

M and Mb. To do so, let γb be the expected observed growth rate of carbon concentration,

in a business-as-usual scenario, such that dMb = Mbγb dt. Using the CO2 concentration

dynamics (2) we obtain

γb =
ξEb − δm(N

b)Mb

Mb
, (3)

where Nb is the quantity of CO2 sequestered in natural sinks, in a business-as-usual sce-

nario. The quantities Eb, Mb, and Nb are all calibrated using the SSP5 scenarios (Inter-

governmental Panel On Climate Change, 2023), such that γb is an time-varying exogenous

parameter. Using this, we can rewrite the societal abatement strategy as a deviation from

the business-as-usual growth rate. Let α be such abatement strategy, then equation (2) can

be rewritten as

dm :=
dM

M
=
(
γb − α

)
dt, (4)
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where m denotes the logarithm of the CO2 concentration, logM . Rewriting the dynamics

as in equation (2) we rephrase the problem from optimal emissions to optimal abatement,

vis-à-vis the business-as-usual scenario, which allows us to simplify exposition and to

compare more effectively different policy scenarios. Yet, at time it is interesting to link a

given abatement policy α back to emissions. To do so, I introduce the emission reduction

rate ε, implicitly defined as

E = (1− ε(α)) Eb, (5)

which is the fraction of emission society is abating compared to the business-as-usual sce-

nario.

1.2 Temperature

Global mean surface temperature T is modelled using a stylised Budyko–Ghil–Sellers en-

ergy balance model (Hogg, 2008; Ashwin and Von Der Heydt, 2020). Earth’s radiating

balance, in its simplest form, prescribes that an equilibrium temperature T̄ , in K, is de-

termined by equating incoming solar radiation S, in Wm−2, with outgoing longwave ra-

diations ησT̄ 4, where σ = 5.7 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant and η

is an emissivity rate. Due to the presence of greenhouse gasses, certain wavelengths are

scattered and, hence, not emitted, which introduces an additional radiative forcing G, in

Wm−2, which yields the balance equation S = ησT̄ 4 − G. In this paper, we focus on the

role of increased CO2 concentration M compared to pre-industrial levels Mp, as opposed

to other greenhouse gases, hence we can decompose the greenhouse radiative forcing term

G into a constant componentG0 and a component which depends on the steady state level

of CO2 concentration in the atmosphere M̄ with respect to the pre-industrial level Mp,

such that G = G0 +G1 log(M̄/Mp).

In addition to these forces, to study the role of tipping points, I introduce the effects

of land ice albedo on the radiation balance (as done in Ghil and Childress (2011); Dijkstra

and Viebahn (2015)). In particular, as temperatures rise, the area of ice caps, glaciers, and

sea ice shrinks, which in turn reduces the planetary albedo λ(T ), that is, the fraction of

solar radiation reflected by earths’ surface. Hence, the solar radiation which contributed

to warming is a fraction of the total incoming solar radiation S = S0
(
1− λ(T )

)
. This effect

is modelled by letting the planetary albedo transition from a high level λ1 to a lower level
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(λ1 −∆λ) via a sigmoid transition function

σ(T ) =
1

1 + exp(Ti − T )
(6)

where Ti is a calibrated inflection point. Under this specification, the albedo coefficient can

be written as a function of temperature (Figure 1)

λ(T ) = λ1 − (1− σ(x))∆λ. (7)
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Figure 1: Albedo coefficient λ(T ) for different parametrisations of the albedo loss ∆λ.

It is the important to stress that the function λ (7) is a highly stylised average model for

a complex and spatially heterogeneous process, which, in turn, puts a lot of uncertainty

around the parameters Ti and ∆λ.

Equating incoming solar radiation, net of the albedo effect, and outgoing longwave

radiation, net of the greenhouse gas effect, we obtain the energy balance condition

S0
(
1− λ(T̄ )

)
= ησT̄ 4 −G0 −G1 log(M̄/Mp). (8)

To study deviations from radiative balance (8), we define the contribution of tempera-
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ture to forcing

µT (T ) := S0
(
1− λ(T )

)
− ησT̄ 4 (9)

and that of log-carbon concentration

µm(m) := G0 +G1

(
m−mp

)
, (10)

and notice that we can rewrite radiative balance (8) as µT (T̄ ) + µm(m̄) = 0. Then we

assume that temperature dynamics are given by

ϵ dT =
(
µT (T ) + µm(m)

)
dt+ σx dw2 (11)

where ϵ, in Jm−2K−1, is the thermal inertia and wT is a Wiener process.

1.3 Ice-albedo Feedback and Tipping Points

The presence of the ice-albedo feedback effect λ(T ) can introduce tipping points in the

temperature dynamics. To illustrate this, Figure 2 depicts the values of temperature T̄ and

logarithmic carbon concentration m̄, for which the system is in radiative balance, µT (T̄ ) +

µm(m̄) = 0, with three different potential albedo losses ∆λ. For no albedo loss (∆λ = 0%),

as the logarithm of carbon concentration increases, equilibrium temperatures rise linearly.

As the albedo loss increases (∆λ = 6%), an equivalent increase in carbon concentration,

yields larger and non-linear increases in temperature. Past a certain threshold, the system

undergoes a bifurcation, and, for some levels of carbon concentration, one additional stable

equilibrium arises (∆λ = 8%). This new equilibrium represents a situation in which a

significant fraction of the ice coverage has melted and cannot reform naturally, without

large decreases in carbon concentration. For example, consider the carbon concentration

level M = 610 in Figure 2. For ∆λ = 6%, the only temperature that yields radiative

balance, in deviation from pre-industrial level is approximately +3.5°. For ∆λ = 8%, at

the same level of carbon concentration, radiative balance is achieved at both +4°and +7.5°.
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Figure 2: Nullclines of the dynamics {(T,M) : Ṫ = 0} for different parametrisations of albedo loss ∆λ.
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The presence of a bifurcation induced

by the ice-albedo feedback has strong im-

plications for the dynamics. To illustrate

this, we can calibrate the model using the

SSP5 - Baseline scenario (Kriegler et al.,

2017) as a business-as-usual benchmark.

This scenario describes an energy intensive

future, in which fossil fuel usage devel-

ops rapidly and little to no abatement takes

place. The growth rate of carbon concen-

tration γb (3) implied by the SSP5 - Baseline

is plotted in Figure 3 (the calibrated parameters can be found in B).

Using the calibrated growth rate of carbon concentration γb, I simulate the business-

as-usual α = 0 path of temperature and carbon concentration implied by the dynamics (4)

and (11). With no ice-albedo feedback (left panel of Figure 4), as expected, temperature

grows with the logarithm of carbon concentration and the model, despite its simplicity,

tracks well the SSP5 - Baseline temperature projections. Under a larger albedo loss (right
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panel of Figure 4) keeping the same emissions, the temperature exhibits a very different

path. After passing a critical threshold, the temperature converges rapidly to a second

steady state. Crossing this tipping point represents a large threat to the economy. First,

an acceleration of temperature growth causes large economic damages. Second, removing

the emitted carbon that triggered the tipping point is not sufficient to revert back to the

pre-tipping equilibrium. These two factors impose a discontinuity in the externality of

emissions: the ton of carbon that triggers a transition is discontinuously more damaging

than the previous one.
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Figure 4: Business as usual path of temperature with small (left) and large (right) albedo loss. Each marker
represents the temperature every 20 years, starting from 2020. In black, the SSP5 - Baseline model.

1.4 Critical Slowdown and Early Warning Signals
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Figure 5: Density of temperature shocks at M = 600.

Another crucial difference between the cli-

mate dynamics in the presence of a tipping

point, vis-à-vis those modelled with a jump

process (e.g. Dietz et al. 2021; Hambel,

Kraft and Schwartz 2021) is the presence

of critical slowdown: as we approach the

tipping point, large temperature deviation

shocks persist for longer, as ice struggles
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to reform. To illustrate this effect, Figure

5 shows the density of temperature as car-

bon concentration approaches the tipping

point (derived in Appendix A). For larger levels of albedo loss, large deviations of temper-

ature are more persistent, hence more time are spent in a high temperature regime. This

has two relevant implications for optimal emissions. First, it can act as an early warning

signal; if one is uncertain about the size of the albedo loss, long periods of high temper-

ature can be used to infer that the loss is high and the system is approaching the tipping

point. Second, such repeated and persistent periods of high temperatures generate large

economic damages.

2 Economy

In the model, the economy interacts with the climate in two ways. First, the economy alters

climate dynamics by emitting carbon dioxide E as a by-product of output production Y .

Second, as the climate changes and temperatures T rise, the rate of capital depreciation in-

creases, thereby lowering economic growth. This is in line with recent empirical evidence

on the role of temperature variations in lowering output growth (Dell, Jones and Olken,

2009; 2012)

As in Pindyck and Wang (2013) and Hambel, Kraft and Schwartz (2021), I assume out-

put Y to be a linear function of capital K,

Y = AK, (12)

whereA denotes total factor productivity. Output can be used for investment I , abatement

expenditures B, or consumption C

Y = I +B + C. (13)

As in Nordhaus (1992; 2008), I assume abatement expenditures to be proportional to

output Y and quadratic in the emission reduction rate ε (5), namely B = β(ε)Y where

β(ε) =
1

2
ωε2. (14)

The function β(ε) captures the idea that, at a time t, a marginal reduction in emissions, vis-
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à-vis the business-as-usual scenario, becomes increasingly costly at a rate ωε. As time pro-

gresses, so does abatement technology and a given abatement objective becomes cheaper.

We model this by letting the exogenous technological parameter ω decrease over time.

2.1 The Role of Climate Change
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Figure 6: Calibrated damage function d(T )

In the last 50 years, productivity in the agri-

cultural sector, net of technological growth,

has declined due to temperature increases

(Dell, Jones and Olken 2009). Given the im-

perfect substitutability of food, resources

have been diverted from other sectors to-

wards agriculture which has increased the

opportunity cost of capital investment in

manufacturing and services. For a thor-

ough treatment of this mechanic see Dietz

and Lanz (2019). In this paper, I will ab-

stract from the details of the mechanism

but keep the role of temperatures in reduc-

ing capital growth rate and assume this to

be the main damage deriving from climate

change. In the model, capital depreciates at a rate δk + d(T ) where δk is the depreciation

rate of capital at pre-industrial temperature levels T p and d(T ) is the damage function.

Following Weitzman (2012), I assume the damage function to take the form

d(T ) = ξ(T − T p)υ. (15)

Finally, in investing and abating the economy incurs adjustment costs proportional to

capital κ2
(
I +B

)2√
K. Putting this all together we obtain the evolution of capital

dK =

(
I − (δk + d(T ))K − κ

2

(
I +B

)2√
K

)
dt+KσK dw2, (16)

where w2 is a Wiener process. As in the climate model, it is convenient to rewrite the
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dynamics in terms of growth rates. Let k be logK, then equation (16) can be rewritten as

dk =

(
I

K
− δk − d(T )− κ

2

(
I

K
+
B

K

)2
)

+ σK dw2. (17)

Using the abatement costs (14), the abatement expenditure to capital ratio can be writ-

ten as
B

K
= Aβ(ε). (18)

Furthermore, letting

χ :=
C

Y
=
C

K

1

A
(19)

be the consumption share of output we can write the investment to capital ratio, using the

budget equation (13), as
I

K
= A

(
1− χ− β(ε)

)
. (20)

These two equations allow us to rewrite the log-growth of capital dk (17), in terms of

the consumption decision χ, the abatement decision α, via the emission reduction rate ε,

temperature T , and technological progress, in production A and abatement ω,

dk =


Endogenous economic growth︷ ︸︸ ︷

A(1− χ)− κ

2
A2(1− χ)2 − δk− Aβ(ε)︸ ︷︷ ︸

Abatement

−
Climate damages︷︸︸︷

d(T )

 dt+ σK dw2 (21)

The last step is to link this back to log-output growth dy. This is easily done by let-

ting the productivity growth rate be defined as ϱ dt = d logA and, to simplify notation,

grouping endogenous economic growth as

ϕ(χ) := A(1− χ)− κ

2
A2(1− χ)2, (22)

we can write changes in log GDP as

dy =
(
ϱ+ ϕ(χ)− δk −Aβ(ε)− d(T )

)
dt+ σK dw2. (23)

3 Social Planner Problem

To derive the optimal abatement path and the social cost of carbon, I solve the problem

of a social planner who derives utility from consumption, is risk averse, and discounts
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the future. To disentangle the role of these two components I model the social planner as

having Epstein-Zin preferences. Societal utility U at time t, given an abatement strategy α

and a consumption schedule χ, is defined recursively by the integral equation as

U(t;α(t), χ(t)) = Et
∫ ∞

t
f (C(s), U(s;α(s), χ(s))) ds (24)

where C(s) = χ(s)Y (s) is the consumption path. Introducing the coefficient of relative

risk aversion θ > 1, elasticity of intertemporal substitution ψ > 0, and the discount rate ρ,

the Epstein-Zin aggregator (Duffie and Epstein, 1992) is defined as

f(C,U) =
ρ

1− 1/ψ
(1− θ)U

( C

((1− θ)U)
1

1−θ

)1−1/ψ

− 1

 . (25)

Given the optimal abatement and consumption schedule α and χ, let the value function be

defined recursively as

Vt(T,m, y) = sup
χ,α

Et
∫ ∞

t
f(C, Vs) ds, (26)

which satisfies the Hamilton-Jacobi-Bellman (HJB)

−∂tVt = f(C, Vt) + ∂TVt µ(T,m) + ∂mVt (γt − α) +

∂yVt

(
ϱ+ ϕ(χ)− δk −Aβ(ε)− d(T )

)
+

σ2k
2
∂2yVt +

σ2T
2
∂2TVt

(27)

The HJB equation is then solved numerically to obtain the value function at time t = 0,

V0, and obtain optimal consumption and abatement schedules. The details of the numeri-

cal procedure are laid out in Appendix D and E.

4 Benchmark model: Stochastic Tipping

Before analysing optimal emission with tipping points, this section introduces a bench-

mark model with stochastic tipping. Hereafter, I refer to the model as Stochastic Tipping

model. The Stochastic Tipping model is a widely used in the economic literature to ap-

proximate tipping points in the climate dynamics (e.g. Hambel, Kraft and Schwartz 2021).

Comparing the model developed in this paper with the Stochastic Tipping model allows

us to determine if and how the optimal abatement differ and, as a consequence, what the

approximation misses.
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To establish a meaningful benchmark, I will assume that the albedo is constant in tem-

perature, namely λ(T ) = λ1, such that the contribution of temperature to forcing (9) is

given by

µSTT (T ) := S0(1− λ1)− ησT 4. (28)

The tipping point does not arise due to the albedo coefficient changing, but is modelled

as a counting process N with arrival rate π(T ) and intensity Θ(T ), both increasing in tem-

perature. Intuitively, as temperature rises, the risk of tipping π(T ) and the size of the

temperature increase Θ(T ) grow. Then temperature dynamics in the Stochastic Tipping

model follow

ϵ dT =
(
µSTT (T ) + µm(m)

)
dt+ σxdw

ST +Θ(T )dN. (29)

Following Hambel, Kraft and Schwartz (2021), the calibrated arrival rate and temperature

increase are calibrated as

π(T ) = −1

4
+

0.95

1 + 2.8e−0.3325(T−TP)
and (30)

Θ(T ) = −0.0577 + 0.0568(T − TP)− 0.0029(T − TP)2. (31)

5 Main Results

Figure (7) and (8) display the optimal path of net emissions E and carbon concentrationM

respectively in three scenario: an albedo loss ∆λ = 6%, in which there is no tipping point;

a loss of ∆λ = 8% in which there is a tipping point; the benchmark stochastic model. The

optimal emissions fall rapidly in all three parametrisation, highlighting the importance of

rapid abatement. Yet, optimal emission path in the benchmark Stochastic Tipping model

resembles closely that of 6% the albedo loss. On the contrary, in the presence of a tipping

point, that is, the 8% albedo loss, emissions fall more rapidly and abatement policies are

more ambitious. This leads to much lower optimal long run carbon concentration, if there

is a tipping point induced by the albedo effect. Using the Stochastic Tipping model as an

approximation of a tipping point can lead to insufficiently ambitious abatement policies,

both in scope and in timing.
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Figure 7: Optimal path of net emissions under the three model specifications, for 500 simulations.

Figure 8: Optimal path of carbon concentration under the three model specifications, for 500 simulations.
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Figure 9, shows the resulting optimal median path of GDP (solid line) and consumption

(dashed line). GDP follows similar trajectories under all three specifications of climate

dynamics, which suggests that the additional abatement expenditure in the case of 8%

albedo loss, is fully compensated by reduced temperature damages. Yet, the amount of

GDP consumed in the latter specification is lower than in the cases of 6% albedo loss and

stochastic tipping, as more GDP is devoted to abatement.

Figure 9: Optimal median path of GDP (solid) and consumption (dashed) under the three model specifica-
tions, for 500 simulations.

6 Conclusion

This paper studies the role of tipping points in determining optimal emissions. Building

on the calibration by Hambel, Kraft and Schwartz (2021), I extend the climate dynamics to

include a potential bifurcation induced by the loss in albedo due to the change in the area

of ice caps, sea ice, and glaciers Ashwin et al. (2012); Ashwin and Von Der Heydt (2020). I

show that, in the presence of tipping points, optimal abatement is more ambitious in scope

and timing. In fact, early abatement is crucial to avoid long periods of exposure to tipping

risk.

The model presented here represents an early and simplified analysis that can be ex-
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tended in various directions. First, more work is needed to analytically link the risk of tip-

ping and the optimal abatement strategy, in order to quantify precisely the role of higher

order climate dynamics in determining the social cost of carbon. Second, the underlying

assumption of the social planner’s optimisation problem is that she knows the climate dy-

namics and the role of the ice-albedo feedback. Such an assumption calls for extending the

analysis to a situation in which the magnitude of the albedo loss is not known and rather

can be estimated using early warning signals. Yet, in the face of uncertainty, the optimal

abatement policy derived in this paper serves as a good rule against the possible worst

case scenario.
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A Steady State Density derivation

The Fokker-Planck equation for the density of temperature p is

∂T

{
1

ϵ
µ(T,m)p(T ) +

σ2T
2ε2

p′(T )
}

= 0, (32)

such that, the steady state temperature p satisfies the ODE

1

ϵ
µ(T,m)p(T ) +

σ2T
2ε2

p′(T ) = 0, (33)

which has solutions

p(T ) ∝ exp

(
−V (T,m)

σ2T /2ϵ
2

)
, (34)

where

V (T,m) =(µm(m) + (1− λ1)S0)T − η

5
T 5+

S0(λ1 − λ2) log(1 + exp(T − Ti)).

(35)
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B Calibration

Preferences

ρ 0.015 Discount rate

θ 10 Relative risk aversion

ψ 1.5 Elasticity of intertemporal substitution

Economy

ω 0.002 Speed of abatement technology cost reduction

ϱ 0.0009 Growth of TFP

κ 6%32 Adjustment costs of abatement technology

δk 0.0116 Initial depreciation rate of capital

ξ 0.00026 Coefficient of damage function

ν 3.25 Exponent of damage function

A0 0.113 Initial TFP

Y0 75.8 Initial GDP

σk 0.0162 Variance of GDP

τ 500 Steady state horizon

Climate

T0 288.56 [K] Initial temperature

T p 287.15 [K] Pre-industrial temperature

M0 410 [p.p.m.] Initial carbon concentration

Mp 280 [p.p.m.] Pre-industrial carbon concentration

N0 286.65543 [p.p.m.] Initial carbon in sinks

σT 1.5844 Volatility of temperature

S0 342 [W / m²] Mean solar radiation

ϵ 15.844 [J / m² K year] Heat capacity of the ocean

η 5.67e− 8 Stefan-Boltzmann constant

G1 20.5 [W / m²] Effect of CO2 on radiation budget

G0 150 [W / m²] Pre-industrial GHG radiation budget

Albedo

Ti 292.75 [K] temperature inflection point
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C Motivation behind the use of Epstein-Zin preferences

Utility preferences as specified by (24) and (25) were introduced by (Epstein and Zin, 1989)

(discrete time) and (Duffie and Epstein, 1992) (continuous time) to circumvent two unde-

sirable features of additive preferences (e.g. CRRA utility) in finance. First, under additive

preferences the elasticity of intertemporal substitution is the inverse of the coefficient of

relative risk aversion. Second, an agent having additive preferences is indifferent between

earlier or later resolution of uncertainty. Translated to the integrated models, as the one

discussed in this paper, these two features yield a counter-intuitive mechanism: the abate-

ment path becomes less ambitious as agents become more risk averse (Pindyck and Wang,

2013). This is because, in a growing economy with rising consumption, future utility de-

creases in risk aversion, which yields, ceteris paribus, a higher optimal emission path.

The use of Epstein-Zin preferences is a common way to overcome this issue (Pindyck and

Wang, 2013; Crost and Traeger, 2013; Ackerman, Stanton and Bueno, 2013; Hambel, Kraft

and Schwartz, 2021; Olijslagers and Van Wijnbergen, 2019).

To make sense of this utility specification it is useful to consider two illustrative pa-

rameter cases. First, as the elasticity of intertemporal substitution converges to the inverse

coefficient of relative risk aversion, ψ → 1/θ, the aggregator (25) becomes separable

lim
ψ→1/θ

f(C,U) = ρ

(
1

1− θ
C1−θ − U

)
, (36)

and the utility (24) simplifies to the usual time separable formulation

U(α, χ) = ρE
∫ ∞

t
exp

(
− ρ(s− t)

) 1

1− θ
C(s)1−θ dt. (37)

Second, if we let the elasticity of intertemporal substitution converge to one, ψ → 1, we

obtain the log-separable aggregator

f(C,U) = ρ(1− θ)U

(
log(C)− 1

1− θ
log
(
(1− θ)U

))
. (38)

D Simplifying Assumptions

For computational purposes, it is convenient to make some simplifying assumption to

reduce the dimensionality of the state space.
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D.1 Decay Rate of Carbon

The calibrated carbon decay δm, as a function of the carbon stored in sinks N , is illustrated

in Figure (10). The calibration assumes a functional form

δm(N) = aδe
−
(
N−cδ
bδ

)2

, (39)

for parameters aδ, bδ, cδ.
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Figure 10: Estimated decay of carbon δm as a function of the carbon stored in sinks N .

To simplify matters I will assume that the amount of carbon sinks present in the atmo-

sphere is a constant fraction of the concentration in the atmosphere, N = N0
M0
M . Using this

setup, under a business-as-usual emission scenario, the decay of carbon follows the path

in Figure 11.
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Figure 11: Estimated decay of carbon δm under the business as usual emission scenario Mb. Each marker is
the decay after every decade.

E Approximating Markov Chain

Th numerical method employed here adapts that presented in (Kushner and Dupuis, 2001).

First, we define a suitably large domain for the state variables X ⊆ R3 and let x =

(T,m, y) ∈ X be the state vector. Then, let u = (χ, α) ∈ U := [0, 1] × [0, γb] be the vec-

tor of controls. Then we can define the operator

Lut =
µ(T,m)

ϵ

∂

∂T
+
(
ϱ+ ϕ(χ)− δk − d(T )−Aβ(α)

) ∂
∂y

+

(γb − α)
∂

∂m
+

(σT /ϵ)
2

2

∂2

∂T 2
+
σ2k
2

∂2

∂y2

(40)

such that the value functional at time t satisfies

− ∂tVt = sup
u

Lut Vt + f(χ, y, Vt). (41)

We seek to define a Markov chain consistent with (41), over a finite grid in the unit

cube

Ωh = {0, h, 2h . . . 1− h, 1}3. (42)

First we define the state dynamics over the unit cube by letting X̃ = X/|X | where

X = [T p, T p +∆T ]× [m0,m]× [y0, y] (43)
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and defining the dynamics

dX̃ = ω(t,X, u) dt+Σ dw (44)

where

ω(t,X, u) =


µ(T,m)/ϵ∆T

(γb − α)/(m−m0)(
ϱ+ ϕ(χ)− δk − d(T )−Aβ(α)

)
/(y − y0)

 (45)

and

Σ =


σT /ϵ∆T 0 0

0 0 0

0 0 σK/(y − y0)

 . (46)

For a given state Xi we can now define the transition probabilities. Let

Q(Xi) =
( σT
ϵ∆T

)2
+

(
σK

y − y0

)2

+ hmax
u

|ω(t,Xi, u)| (47)

then

p(Xi, Xi ± h∆T ) =

σ2
T

2(ϵ∆T )2
+ h ω±

T (t,Xi, u)

Q(Xi)
. (48)

Finally, let

V h(t,X) =
∑
X̃

p(X, X̃)V h(X̃) +
1

1− θ

(
e−ρ∆t((1− θ)V h(t,X))

1−1/ψ
1−θ +∆tC

1− 1
ψ

) 1−θ
1−1/ψ

.

(49)

(Kushner and Dupuis, 2001) have shown that the transitional probabilities p form a con-

sistent Markov chain and that V h → V as h→ 0.

F Post-transition phase

We assume that at some point in the future τ ≫ 0, the abatement rate is equal to emission

growth, γb = α, and technological progress caps, ϱ = 0, such that the state variables evolve

according to dynamics

dm = 0, (50)

ϵ dT = µ(T,m) dt+ σT dw1 and (51)

dy =
(
ϕ(χ)− δpk − d(T )

)
dt+ σk dw2. (52)
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I call this the post-transition phase. We can then compute a steady state value function

Vt =: V for all t ≥ τ , which satisfies the Hamilton-Bellman-Jacobi equation

0 = Lχ V + f(χ, y, V ), (53)

where

Lχ =
µ(T,m)

ϵ

∂

∂T
+
(
ϕ(χ)− δk − d(T )

) ∂
∂y

+
(σT /ϵ)

2

2

∂2

∂T 2
+
σ2k
2

∂2

∂y2
. (54)
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